2011

2010

2009

2008

Execute a command on a specified control when clicking on a button

16 June 2010

Today another example of the powerful ramora pattern : execute a RoutedCommand on an Control when you click on a button outside of the aimed control scope.

When is it useful ? : for example when you use the infragistics grid (xamdatagrid) and you want to execute the command which remove the selected row from a button outside of the grid. You then have to exectue the DeleteSelectedDataRecords command on the grid from a button which is outside of the scope of the grid ... then this behavior is useful !

Our implementation will also show how we can apply the "Weak Events pattern" with the dependency property trick (attached property / ramora pattern).

And of course this example can be adapted to subscribe on any event you wants and not only the click of a button.

The behavior itself

Our behavior will listen to the click button, and the handling of the click event will execute the routed command on the target element.

public class ExecuteCommandOnControl : DependencyObject
{
  #region Command
 
  /// <summary>
  /// Command Attached Dependency Property
  /// </summary>
  public static readonly DependencyProperty RoutedCommandProperty =
    DependencyProperty.RegisterAttached("RoutedCommand", typeof(RoutedCommand)
	     , typeof(ExecuteCommandOnControl));
 
  /// <summary>
  /// Gets the Command property.  This dependency property 
  /// indicates ....
  /// </summary>
  public static RoutedCommand GetRoutedCommand(DependencyObject d)
  {
    return (RoutedCommand)d.GetValue(RoutedCommandProperty);
  }
 
  /// <summary>
  /// Sets the Command property.  This dependency property 
  /// indicates ....
  /// </summary>
  public static void SetRoutedCommand(DependencyObject d, RoutedCommand value)
  {
    d.SetValue(RoutedCommandProperty, value);
  }
 
  #endregion
 
  #region IInputElement
  /// <summary>
  /// IInputElement Attached Dependency Property
  /// </summary>
  public static readonly DependencyProperty TargetProperty =
    DependencyProperty.RegisterAttached("Target", typeof(IInputElement), 
	   typeof(ExecuteCommandOnControl),
      new FrameworkPropertyMetadata(null,
        new PropertyChangedCallback(OnTargetChanged)));
 
  /// <summary>
  /// Gets the IInputElement property.  This dependency property 
  /// indicates ....
  /// </summary>
  public static IInputElement GetTarget(DependencyObject d)
  {
    return (IInputElement)d.GetValue(TargetProperty);
  }
 
  /// <summary>
  /// Sets the IInputElement property.  This dependency property 
  /// indicates ....
  /// </summary>
  public static void SetTarget(DependencyObject d, IInputElement value)
  {
    d.SetValue(TargetProperty, value);
  }
 
  /// <summary>
  /// Handles changes to the IInputElement property.
  /// </summary>
  private static void OnTargetChanged(DependencyObject d, 
     DependencyPropertyChangedEventArgs e)
  {
    Button button = d as Button;
 
    if (button != null)
    {
      ButtonClickEventManager.AddListener(button, _customEventListener);
 
    } else
    {
      throw 
	  new ArgumentException("This behavior can only be installed on non-null Button !");
    }
  }
 
  #endregion
 
  private static CustomEventListener _customEventListener = new CustomEventListener();
 
}



WeakEvents

So what is the class CustomEventListener ? This is the object which will handle the click on the button. This class implements the interface IWeakEventListener which is a necessary things to use the Weak event pattern.

We will then not subscribe the click event with the usual way ( using the operator +=) but by calling a WeakEventManager of our own : ButtonClickEventManager.

This manager will then keep a weak reference of our listener and the button on which we operate will then be free to be garbage collected. Otherwise, every button on which we subscribe would be keeped in the memory because each one would be connected to our behavior...

Here is the CustomEventListener class :

public class CustomEventListener : IWeakEventListener
{
  #region IWeakEventListener Members
  public bool ReceiveWeakEvent(Type managerType, object sender, EventArgs e)
  {
    if (managerType == typeof(ButtonClickEventManager))
    {
      var target = 
	  ExecuteCommandOnControl.GetTarget(sender as DependencyObject);
      var command = 
	  ExecuteCommandOnControl.GetRoutedCommand(sender as DependencyObject);
 
      if (target == null || command == null) return true;
 
      command.Execute(null, target);
      return true;
    } else
    {
      return false;
    }
  }
  #endregion
}

And here is our WeakEventMAnager :

public class ButtonClickEventManager : WeakEventManager
{
 
  public static void AddListener(Button source, 
       IWeakEventListener listener)
  {
    ButtonClickEventManager.
	   CurrentManager.ProtectedAddListener(source, listener);
  }
 
  public static void RemoveListener(Button source, 
       IWeakEventListener listener)
  {
    ButtonClickEventManager.
	   CurrentManager.ProtectedRemoveListener(source, listener);
  }
 
  protected override void StartListening(object source)
  {
    Button button = (Button)source;
    button.Click += this.OnButtonClick;
  }
 
  protected override void StopListening(object source)
  {
    Button button = (Button)source;
    button.Click -= this.OnButtonClick;
  }
 
  private void OnButtonClick(Object sender, RoutedEventArgs args)
  {
    base.DeliverEvent(sender, args);
  }
 
  private static ButtonClickEventManager CurrentManager
  {
    get
    {
      Type managerType = typeof(ButtonClickEventManager);
      ButtonClickEventManager manager = 
	  (ButtonClickEventManager)WeakEventManager.GetCurrentManager(managerType);
      if (manager == null)
      {
        manager = new ButtonClickEventManager();
        WeakEventManager.SetCurrentManager(managerType, manager);
      }
      return manager;
    }
  }
}



Example of use

Here a little example of how you can use it to launch the deleteSelected command of the infragistics datagrid from a button outside of the grid :

<Button Content="Delete selected"
  tools:ExecuteCommandOnControl.RoutedCommand="{x:Static igDP:DataPresenterCommands.DeleteSelectedDataRecords}"
  tools:ExecuteCommandOnControl.Target="{Binding ElementName=dataGrid}" />
<igDP:XamDataGrid Name="dataGrid" DataSource="{Binding Data}" />



Interesting readings



Shout it kick it on DotNetKicks.com Awaaz Up


 

Binding to the selected items of a ListBox (or an another items controls)

13 June 2010

A problem you often meet when using MVVM is to get the selected items of an items control, especially Listbox.

You can easily bind the selected item or the current items but when multi selection comes in the way, it becomes harder because the SelectedItems (with an 's' property is not available to binding).

In this article we will discover an easy way to bind yourself with an attached property to the SelectedItems property of the ListBox control.



We will use the Ramora pattern discussed before to bind ourself to the ListBox's selectionChanged events and then update the target list when the selection change.

If the target list implements INotifyCollectionChanged we will update the listbox selection when this event is raised.

Here is the resulting code :

public class ListBoxSelectedItemsSyncher : DependencyObject
{
  private static List<Syncher> _synchers = new List<Syncher>();
 
  #region ListToSync
 
  /// <summary>
  /// ListToSync Attached Dependency Property
  /// </summary>
  public static readonly DependencyProperty ListToSyncProperty =
    DependencyProperty.RegisterAttached("ListToSync", 
	             typeof(IList), typeof(ListBoxSelectedItemsSyncher),
      new FrameworkPropertyMetadata((IList)new List<Object>(),
        FrameworkPropertyMetadataOptions.BindsTwoWayByDefault, 
		       new PropertyChangedCallback(OnListToSyncChanged)));
 
 
  private static void OnListToSyncChanged(DependencyObject d, DependencyPropertyChangedEventArgs e)
  {
    ListBox listBox = d as ListBox;
 
    if(!(d is ListBox)
     throw new ArgumentException("ListBoxSelectedItemsSyncher is only applyable to Listbox");
 
    Syncher synch = (from Syncher syncher 
	              in _synchers where syncher.ListBox == listBox select syncher)
                             .FirstOrDefault();
    if (synch != null)
    {
      synch.ListToSync = e.NewValue as IList;
    } else
    {
      synch = new Syncher(listBox, e.NewValue as IList);
      _synchers.Add(synch);
      listBox.Unloaded += new RoutedEventHandler(listBox_Unloaded);
    }
  }
 
  static void listBox_Unloaded(object sender, RoutedEventArgs e)
  {
    ListBox listBox = sender as ListBox;
    Syncher synch = (from Syncher syncher 
	              in _synchers where syncher.ListBox == listBox select syncher)
                      .FirstOrDefault();
    if (synch != null)
    {
      _synchers.Remove(synch);
      synch.Dispose();
      synch = null;
    }
  }
 
  /// <summary>
  /// Gets the ListToSync property.  This dependency property 
  /// indicates ....
  /// </summary>
  public static IList GetListToSync(DependencyObject d)
  {
    return (IList)d.GetValue(ListToSyncProperty);
  }
 
  /// <summary>
  /// Sets the ListToSync property.  This dependency property 
  /// indicates ....
  /// </summary>
  public static void SetListToSync(DependencyObject d, IList value)
  {
    d.SetValue(ListToSyncProperty, value);
  }
 
  #endregion
 
 
  internal class Syncher : IDisposable
  {
 
    private ListBox _listbox;
    public ListBox ListBox { get { return _listbox; } }
 
    private IList _listToSync;
    public IList ListToSync
    {
      get { return _listToSync; }
 
      set
      {
        detachTheListToSynch();
        _listToSync = value;
        attachTheListToSynch();
      }
    }
 
    public Syncher(ListBox listbox, IList listToSync)
    {
      _listbox = listbox;
      _listToSync = listToSync;
      attachTheListToSynch();
    }
 
    void collectionChangedList_CollectionChanged(object sender,
                        	NotifyCollectionChangedEventArgs e)
    {
      //Add new items   
      if (e.NewItems != null)
      {
        foreach (Object item in e.NewItems)
        {
          _listbox.SelectedItems.Add(item);
        }
      }
      if (e.OldItems != null)
      {
        foreach (Object item in e.OldItems)
        {
          _listbox.SelectedItems.Remove(item);
        }
      }
 
      if (e.Action == NotifyCollectionChangedAction.Reset)
        _listbox.SelectedItems.Clear();
 
      CommandManager.InvalidateRequerySuggested();
    }
 
    void _list_SelectionChanged(object sender, SelectionChangedEventArgs e)
    {
      if (_listToSync != null)
      {
        //Add new items                   
        foreach (Object item in e.AddedItems)
        {
          _listToSync.Add(item);
        }
        foreach (Object item in e.RemovedItems)
        {
          _listToSync.Remove(item);
        }
        CommandManager.InvalidateRequerySuggested();
      }
    }
 
    #region IDisposable Members
    public void Dispose()
    {
      if (_listbox == null) return;
      _listbox.SelectionChanged -= _list_SelectionChanged;
      detachTheListToSynch();
      _listbox = null;
    }
    #endregion
 
    #region private methods
    private void attachTheListToSynch()
    {
      _listbox.SelectionChanged -= _list_SelectionChanged;
      if (_listToSync == null) return;
 
      INotifyCollectionChanged collectionChangedList = null;
      if ((collectionChangedList = _listToSync as INotifyCollectionChanged) != null)
        collectionChangedList.CollectionChanged 
	  += new NotifyCollectionChangedEventHandler(collectionChangedList_CollectionChanged);
 
      //Update the selection with the new list
      _listbox.SelectedItems.Clear();
 
      foreach (var item in _listToSync)
        _listbox.SelectedItems.Add(item);
 
      _listbox.SelectionChanged 
	       += new SelectionChangedEventHandler(_list_SelectionChanged);
    }
 
    private void detachTheListToSynch()
    {
      INotifyCollectionChanged collectionChangedList = null;
      if ((collectionChangedList = _listToSync as INotifyCollectionChanged) != null)
        collectionChangedList.CollectionChanged -= collectionChangedList_CollectionChanged;
    }
    #endregion
 
  }
 }


Here we are.

Edit : I found out later an another version of the same feature made by Samuel Jack on his blog : http://blog.functionalfun.net/2009/02/how-to-databind-to-selecteditems.html !



Shout it kick it on DotNetKicks.com


 

[Performance tips] Use the system shadows instead of your own

27 April 2010

Today a fast and easy tip about shadows and performance.

In a project I have recently made, we've told the designer not to use BitmapEffects because they are performance killer. He so decided to create it's own shadows by duplicating each shape and make them looks like shadows(designer magic, voodoo things, etc...). I was then surprised to see that it kills performance too !


There is still the shaders effect which came with the 3.5 SP1 framework but they will be available only on vista or greater plateforms and their performance will depend of your graphic cards.

But we have an another ace in you deck : the system shadow which are quite fast even on software rendering!

Using it is quite easy :

  1. Add the PresentationFramework.Aero reference to your project,
  2. Add the following XML namespace : ”clr-namespace:Microsoft.Windows.Themes;assembly=PresentationFramework.Aero”,
  3. Use the SystemDropShadowChrome element available with this namespace !



But there is a drawback : you can only produce squared shadows. But you can still play with the CornerRadius property to create simily round shadows.

Here is a little example of XAML code:

<UniformGrid
    xmlns:shadows="clr-namespace:Microsoft.Windows.Themes;assembly=PresentationFramework.Aero"
    Columns="2">
  <shadows:SystemDropShadowChrome Margin="25">
    <ListBox>
      <ListBoxItem Content="One item" />
      <ListBoxItem Content="Another item" />
      <ListBoxItem Content="Another third item" />
    </ListBox>
  </shadows:SystemDropShadowChrome >
 
  <shadows:SystemDropShadowChrome Margin="25" CornerRadius="800" Width="100" Height="100">
    <Ellipse Stroke="Black" Fill="White" />
  </shadows:SystemDropShadowChrome>
</UniformGrid>

Shadows screenshot

Shout it kick it on DotNetKicks.com




 

Freeze brushes directly in the XAML to improve your application's performances

12 April 2010

When you read the MSDN guidelines to improve WPF's performances you can find that it's a good idea to freeze Freezable objects.

It's a quite easy thing to do via the code but it's quite harder to do it directly in the XAML. In this post we will see how to do so.

What are freezable objects

One upon a time, the MSDN said :

A Freezable is a special type of object that has two states: unfrozen and frozen. When unfrozen, a Freezable appears to behave like any other object. When frozen, a Freezable can no longer be modified.

A Freezable provides a Changed event to notify observers of any modifications to the object. Freezing a Freezable can improve its performance, because it no longer needs to spend resources on change notifications. A frozen Freezable can also be shared across threads, while an unfrozen Freezable cannot.



With this definition in mind, you surely had guess that it's a good thing to freeze them because and you surely want to do it... But how to do ?

Freeze freezable objects via the code

It's quite easy to do it in the code. The only thing do check is the property CanFreeze which tells you if you can or not freeze the Freezable object. You will then use this code :

if (myBrush.CanFreeze)
{
    // Makes the brush unmodifiable.
    myBrush.Freeze();
}



Freeze them (with ice) in XAML

The tips is to know the good XML Namespace http://schemas.microsoft.com/winfx/2006/xaml/presentation/options.

The use in the XAML is then quite easy :

<LinearGradientBrush ice:Freeze="True" 
xmlns:ice="http://schemas.microsoft.com/winfx/2006/xaml/presentation/options" 
/>



Shout it kick it on DotNetKicks.com



 

Simple properties Mapper by reflection : stop copying manually each property of your objects !

8 April 2010

There is time when you have to copy each property of an object to one another. This is called mapping and it's very fastidious to do it by hand.

In this post we'll see how to create a method extension which do it for you in one line of code !

When can it be useful

Here is a non exhaustive list of usage you can find to this snippet:

  • You want to reload the previous state of an object without changing it's instance : just clone it as a snapshot and copy back the properties when you want,
  • You get's some Data Transfert Object coming from WCF/Web services and you want's to fill a specific object with this data,
  • etc ...



I surely know this is not the most efficient way to solve these problems, but this is fast to use/understand and easy to implements.

Let's jump to the code !

What's inside ? Quite a few things actually ! There is two object, the source in which we take the data and the target in which we fill in these datas.

I use reflection to obtain every property of the source and then I check on the target if a property exist with the same name. If yes I fill it with the value of the property in the source object.

I also added a filter which is a list of Property name which will be ignored by the "copy process".

With a little more time you can also add a dictionnary which may map a property name in the source to an another property name in the target if the name are note exactly the same...

public static class PropetiesMapper{
	/// <summary>
    /// Copies all the properties of the "from" object to this object if they exists.
    /// </summary>
    /// <param name="to">The object in which the properties are copied</param>
    /// <param name="from">The object which is used as a source</param>
    /// <param name="excludedProperties">Exclude these proeprties from the copy</param>
    public static void copyPropertiesFrom(this object to, object from, string[] excludedProperties)
    {
 
      Type targetType = to.GetType();
      Type sourceType = from.GetType();
 
      PropertyInfo[] sourceProps = sourceType.GetProperties();
      foreach (var propInfo in sourceProps)
      {
        //filter the properties
        if (excludedProperties != null
          && excludedProperties.Contains(propInfo.Name))
          continue;
 
        //Get the matching property from the target
        PropertyInfo toProp =
          (targetType == sourceType) ? propInfo : targetType.GetProperty(propInfo.Name);
 
        //If it exists and it's writeable
        if (toProp != null && toProp.CanWrite)
        {
          //Copty the value from the source to the target
          Object value = propInfo.GetValue(from, null);
          toProp.SetValue(to,value , null);
        }
      }
    }
 
    /// <summary>
    /// Copies all the properties of the "from" object to this object if they exists.
    /// </summary>
    /// <param name="to">The object in which the properties are copied</param>
    /// <param name="from">The object which is used as a source</param>
    public static void copyPropertiesFrom(this object to, object from)
    {
      to.copyPropertiesFrom(from, null);
    }
 
    /// <summary>
    /// Copies all the properties of this object to the "to" object
    /// </summary>
    /// <param name="to">The object in which the properties are copied</param>
    /// <param name="from">The object which is used as a source</param>
    public static void copyPropertiesTo(this object from, object to)
    {
      to.copyPropertiesFrom(from, null);
    }
 
    /// <summary>
    /// Copies all the properties of this object to the "to" object
    /// </summary>
    /// <param name="to">The object in which the properties are copied</param>
    /// <param name="from">The object which is used as a source</param>
    /// <param name="excludedProperties">Exclude these proeprties from the copy</param>
    public static void copyPropertiesTo(this object from, object to, string[] excludedProperties)
    {
      to.copyPropertiesFrom(from, excludedProperties);
    }
  }



So, do you still want to put an "Hand made" label on your object's mapping ? :-D

A more complex and complete tool

For those which wants something more powerful and complete : take a look at the automapper library on codeplex.

Shout it kick it on DotNetKicks.com



 

Binding on a Property which is not a DependencyProperty

5 April 2010

A lot of controls expose properties which are not DependencyProperties and then you can’t put a binding on it. On some other cases, you only have a getter as accessor and you can’t put a binding on it too…

This is for example the case for the ribbon’s group of the office ribbon or the converter’s parameter.

If you ever tried to do so, you surely had an exception throwned :

A 'Binding' cannot be set on the 'SetCEDEJDED' property of type 'Tralala'.
A 'Binding' can only be set on a DependencyProperty of a DependencyObject.


In this post we will discover a work-around…

The main idea is to use a kind of proxy/observer (a definition can be found in this post) which will reflect every change on the source object to the target object and vice versa.

Here are the main parts of the solution ..

Specification: the XAML code we'll use

Here is the code snippet which describe how we will use our proxy in the XAML. There will be no code-behind.

<Window x:Class="BindOnNonDependencyProperty.MainWindow" 
    xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
    xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
    xmlns:us="clr-namespace:BindOnNonDependencyProperty"
    Title="BindOnNonDependencyProperty" >
  <DockPanel >
    <TextBox x:Name="myTextBox" DockPanel.Dock="Top"  />
    <TextBox x:Name="monTextBlockCible"  DockPanel.Dock="Top"  />
    <us:ExtendedBinding Source="{Binding ElementName=myTextBox,Path=Text,Mode=TwoWay}"
              Target="{Binding ElementName=monTextBlockCible,Path=Text,Mode=TwoWay}"
              />
  </DockPanel>
</Window>



The correct base class for our proxy/observer

We will call it ExtendedBinding and it must be inherithing from DependencyObject at last to be abble to own DependencyProperty. But the only way to add a DependencyObject into our XAML is to add it into a resourceDictonary.

This is a drawnback because, by doing it, it will no more be into the control's tree and then it will be impossible to make a binding on one of it's property. Note that it's still possible to use it as a Target from another place in our XAML but you can't do a Binding on one of it's properties. This code will not work :

<Windows.Resources>
   <MyDependencyObject x:Key="myKey" MyProperty="{Binding Tralala, ElementName=myTarget}" />
</Windows.Resources>



Then to put it insode the control's tree, we only had to make it an UIElement will you say... No because in the actual version of the Framework you won't have inheritance of the DataContext and the use of the 'ElementName' binding will be prohibited. Hopefully, there is a solution, our proxy have to inherit from FrameworkElement and everything will work fine !

The DependencyProperties

We will add two dependencyProperties, one will be the target and the second will be the source.

These DP will be customize by using the FrameworkPropertyMetadata two enables these features :

  • Binding will be done using the TwoWay mode,
  • The UpdateSourceTrigger used will be the PropertyChanged event.


How it works

The core of our proxy is to override the DependencyObject's OnPropertyChanged method. Each change on the source or the target will update it's counterparty.

We have to take care not to fall into a loop : when we will update the target or the source we'll also raise a PropertyChanged event and we must ignore this one....


Final code

public class ExtendedBinding : FrameworkElement
  {
    #region Source DP
    //We don't know what will be the Source/target type so we keep 'object'.
    public static readonly DependencyProperty SourceProperty =
      DependencyProperty.Register("Source", typeof(object), typeof(ExtendedBinding),
      new FrameworkPropertyMetadata()
      {
        BindsTwoWayByDefault = true,
        DefaultUpdateSourceTrigger = UpdateSourceTrigger.PropertyChanged,
      });
    public Object Source
    {
      get { return GetValue(ExtendedBinding.SourceProperty); }
      set { SetValue(ExtendedBinding.SourceProperty, value); }
    }
    #endregion
 
    #region Target DP
      //We don't know what will be the Source/target type so we keep 'object'.
    public static readonly DependencyProperty TargetProperty =
      DependencyProperty.Register("Target", typeof(object), typeof(ExtendedBinding),
      new FrameworkPropertyMetadata()
      {
        BindsTwoWayByDefault = true,
        DefaultUpdateSourceTrigger = UpdateSourceTrigger.PropertyChanged,
      });
    public Object Target
    {
      get { return GetValue(ExtendedBinding.TargetProperty); }
      set { SetValue(ExtendedBinding.TargetProperty, value); }
    }
    #endregion
 
    protected override void OnPropertyChanged(DependencyPropertyChangedEventArgs e)
    {
      base.OnPropertyChanged(e);
      if (e.Property.Name == ExtendedBinding.SourceProperty.Name)
      {
	//no loop wanted
        if (!object.ReferenceEquals(Source, Target))
          Target = Source;
      }
      else if (e.Property.Name == ExtendedBinding.TargetProperty.Name)
      {
	//no loop wanted
        if (!object.ReferenceEquals(Source, Target))
          Source = Target;
      }
    }
 
  }



Shout it kick it on DotNetKicks.com



 

French WPF community

24 March 2010

Hello everybody,

No funny post since a long time now and there is a reason : I am creating a new web site in French, WPF France.

The goal is to create a french WPF community because there is not a lot of resources in French about this great technology.

If you want to join the party : mail me !

Shout it kick it on DotNetKicks.com %%%



 

MVVM - Creating ViewModel : create dynamic proxies with Castle (solution 3 of n)

11 March 2010



In fact you are looking for this page : MVVM - Creating ViewModel : create dynamic proxies with Castle (solution 3 of n)

 

MVVM - Creating ViewModel : create dynamic proxies with Castle (solution 3 of n)

Here is the next episode of our serie MVVM - Creating ViewModel. A list of all the article about creating a ViewModel is here..

Today we are going to see how to create dynamic proxies for our business objects.

What are Dynamic proxies ?

Readers in a hurry can directly jump to the third part "An implementation".

Proxies are a Desing Pattern which is used a lot in our computer programming world. Here is the Wikipedia definition :

A proxy, in its most general form, is a class functioning as an interface to something else. The proxy could interface to anything: a network connection, a large object in memory, a file, or some other resource that is expensive or impossible to duplicate.


The easiest example to understand I have found is sunglasses. The sunglasses are a proxy between the real world (with all the funky colors) and the world you see trough them (where everything is grey/brown)... You also noticed that the proxy is not neutral, it adds a behaviors(here the gray filter on your vision), but this is not mandatory.
Note : Laurent pointed out that he prefers the TV analogy to explain proxies but I prefer the sunglasses which there is no transformations 3D to 2D.

Proxies

With this in mind let met introduce some vocabulary :

  • The subject: this is the proxied object. In our case : the real world,
  • The client: this is the object which wants to use the subject. In our case : the one who wear the sunglasses,
  • The proxy: this is the object used by the client and which uses the subject. In our case : the sunglasses,
  • The behaviors/interceptors: this is a behavior that the subject does not have and that the proxy creates. In a program, a common interceptor is a logger which tells the start and the end of a method.


Behavior algo example :

public void loggerExampleBehavior(Method theMethod){
  Log("Before method execution.");
  //Execution of the method
  Log("After method execution.");
}


So how to use them for our ViewModel ?(theory)

Readers in a hurry can directly jump to the third part "An implementation".

To be brief : we will add the INotifyPropertyChanged behavior to the business objects by creating a dynamicProxy. We will then no more use directly the business object but the proxies of/to them.
We will so launch the PropertyChangedEvent for each call made to a setter of the business object. Pretty simple ? proxies_INotify_logic.jpg

An implementation with Castle dynamicProxy (code)


To implement the proxy pattern dynamicly we will use Castle Dynamic Proxy. This framework is pretty simple to use as you'll see.

There is only one limitation : properties of your business object must be marked as virtual.

Creation of the proxy

To create our proxy I declare a static method. This method is generic and make any object send NotifyPropertyChanged events on setter calls. The differents class used will be described later.

public class ProxyCreator
{
  public static T MakeINotifyPropertyChanged<T>() where T : class, new()
  {
    //Creates a proxy generator
    ProxyGenerator proxyGen = new ProxyGenerator();
 
    //Generates a proxy using our Interceptor and implementing INotifyPropertyChanged
    var proxy = proxyGen.CreateClassProxy(
      typeof(T),
      new Type[] { typeof(INotifyPropertyChanged) },
      ProxyGenerationOptions.Default,
      new NotifierInterceptor()
      );
 
    return proxy as T;
  }
}

The interceptor


The interceptor does two main things :

  1. It exposes a PropertyChangedEventHandler,
  2. It raises the PropertyChangedEventHandler event when a setter is called with the good name.



Also, I have cached the PropertyChangedEventArgs for better performance.

public class NotifierInterceptor : IInterceptor
{
  private PropertyChangedEventHandler handler;
  public static Dictionary<String, PropertyChangedEventArgs> _cache =
    new Dictionary<string, PropertyChangedEventArgs>();
 
  public void Intercept(IInvocation invocation)
  {
    //Each subscription to the PropertyChangedEventHandler is intercepted (add)
    if (invocation.Method.Name == "add_PropertyChanged")
    {
      handler = (PropertyChangedEventHandler)
            Delegate.Combine(handler, (Delegate)invocation.Arguments[0]);
      invocation.ReturnValue = handler;
    }
    //Each de-subscription to the PropertyChangedEventHandler is intercepted (remove)
    else if (invocation.Method.Name == "remove_PropertyChanged")
    {
      handler = (PropertyChangedEventHandler)
         Delegate.Remove(handler, (Delegate)invocation.Arguments[0]);
      invocation.ReturnValue = handler;
    }
    //Each setter raise a PropertyChanged event
    else if (invocation.Method.Name.StartsWith("set_"))
    {
      //Do the setter execution
      invocation.Proceed();
      //Launch the event after the execution
      if (handler != null)
      {
        PropertyChangedEventArgs arg =
          retrievePropertyChangedArg(invocation.Method.Name);
        handler(invocation.Proxy, arg);
      }
    }
    else invocation.Proceed();
  }
 
  // Caches the PropertyChangedEventArgs
  private PropertyChangedEventArgs retrievePropertyChangedArg(String methodName)
  {
    PropertyChangedEventArgs arg = null;
    NotifierInterceptor._cache.TryGetValue(methodName, out arg);
    if (arg == null)
    {
      arg = new PropertyChangedEventArgs(methodName.Substring(4));
      NotifierInterceptor._cache.Add(methodName, arg);
    }
    return arg;
  }
}

How we use it in the application


We'll only have to expose the proxies to our views with a little snippet of code :

MyBusinessObject myBusinessObject;
DataContext = myBusinessObject = ProxyCreator.MakeINotifyPropertyChanged<MyBusinessObject>();

Interesting links




Shout it kick it on DotNetKicks.com



 

MVVM - Creating ViewModel tutorial

MVVM - Creating ViewModel is a serie of blogposts that talk in details about various ways to create a ViewModel to use it with the MVVM pattern.

You often do not create the business object used by the application which are created by another team and that these objects are not ready for binding.

So you must find a solution to create an object which will in fact be very similar of your business object BUT ready for binding. These posts describe the differents solutions you have in hand.


So far the following parts have been published:

  1. Wrap your business object
  2. Use XAML Power Toys
  3. Create dynamic proxies
  4. Use the object builder of CAB
  5. Generate IL code (TO DO)



If you have other solution, don't forget to tell about in the comments !





 

Sync framework - choose your primary keys type carefully

5 March 2010

Do you know the Sync Framework ? This is an amazing framework that enables roaming, sharing of data, and taking data offline !

One usage You can imagine is to sync some local clients databases with a big distant one. Each client taking its data with him and each client was abble to edit/create/delete data. synchKeys

The scenarii where the problem occurs

So where is the problem with the primary keys ? Often, when you design your database you set the types of the primary keys of each row as Int. This integer is when set as autoincremented, and everything works fine for you.

You can't do that with you wants to use the sync framework in bidirectionnal mode. Let me explain why. Imagine this scenario, where we have a database storing apples :

  1. There is 10 apples in your database and each of them is called by it's number
  2. All clients database are synched and client 1 wants to create an apple. He creates one and the apple is so called "Apple 11" : there is only 10 apples in his local database and the autoincrement rule gives him the next available number which is 11,
  3. simultanely client 2 want alsos to create an apple. He creates one and the apple is so called "Apple 11" : there is only 10 apples in his local database and the autoincrement rule gives him the next available number which is also 11,
  4. Both the clients tries to synch with the main database : there is 2" apples 11" __


Newton
What would have said Newton ? This : Auto incrementation does not work in asynchronous scenarii

Actually the data stored would have been really more complex in the real life than apples and each creation of object makes a lot of links which make this problem very complicated to solve.


The solution

As you can see the guilty part of the scenario is the auto-incrementation of the primary key. As we are in an asynchronous scenario, we can't use this pattern to create unique identifiers.Unique identifier is in fact the key of our problem : as pointed out by the MSDN the solution is to use this type instead of auto-incremented integers for the primary keys of your rows. A new value can be generated on your SQL by using NEWID() or NEWSEQUENTIALID() .

Sync framework with bi-directionnal sync ==> Use unique identifier (GUID) instead of auto-incremented integers !

Useful links



Shout it kick it on DotNetKicks.com


 

MVVM - How to integrate the Office Ribbon respecting the pattern (especially the commands)

4 March 2010

Synopsis

The ribbon controls - introduced by office 2007 -are available for free on the Microsoft Office web site (French users should set the language to "english" to access the ressources). They can leverage the user's experience of your application and are pretty simple to use.

When I wanted to add them into one of my application I realized that it was broking the M-V-VM pattern.

In this post, we will see how to use the Ribbon, then what exactly is the issue and finally examine the solution I use as a work-around.

How to use the ribbon

This is very easy, here are the steps :

  • Download the library on the web site (http://msdn.microsoft.com/fr-fr/office/aa973809.aspx),
  • Add a reference to the dll in your project and dclare in the XAML this XML namespace : clr-namespace:Microsoft.Windows.Controls.Ribbon;assembly=RibbonControlsLibrary
  • Then you are free to use the ribbon's controls.


A central part of the Ribbon library is the RibbonCommand. A RibbonCommand is a WPF command plus a lot of things related to how it's presented : a label, a description, an large image, a small image, etc.... Then every button, combobox, checkbox, ... used in the Ribbon use these infos to change the way they are presented. Here is a little example : MVVMRibbonExample

<Window x:Class="MVVMRibbon.MainWindow"
    xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
    xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
    xmlns:r="clr-namespace:Microsoft.Windows.Controls.Ribbon;assembly=RibbonControlsLibrary"
    Title="MainWindow" Height="350" Width="525">
 
  <Window.Resources>
    <r:RibbonCommand x:Key="MyFirstCommand" LabelTitle="A command"
        LabelDescription="A command description"
        LargeImageSource="/MVVMRibbon;component/antoine64x64.jpg"
        SmallImageSource="/MVVMRibbon;component/antoine64x64.jpg"
        Executed="RibbonCommand_Executed" CanExecute="RibbonCommand_CanExecute" />
 
    <r:RibbonCommand x:Key="ApplicationMenuCommand"
        LargeImageSource="/MVVMRibbon;component/antoine64x64.jpg"
        SmallImageSource="/MVVMRibbon;component/antoine64x64.jpg" />
  </Window.Resources>
 
  <DockPanel LastChildFill="True">
    <r:Ribbon DockPanel.Dock="Top">
      <!--I hide the QuickAccessToolBar because I have no use of it-->
      <r:Ribbon.QuickAccessToolBar>
        <r:RibbonQuickAccessToolBar Visibility="Collapsed" />
      </r:Ribbon.QuickAccessToolBar>
 
      <!--Here is the ApplicationMenu : the bubble acting as a main menu in Office-->
      <r:Ribbon.ApplicationMenu>
        <r:RibbonApplicationMenu  Command="{StaticResource ApplicationMenuCommand}" />
      </r:Ribbon.ApplicationMenu>
 
      <!-- And finally the well-know "tabs"-->
      <r:RibbonTab Label="A first tab">
        <!--The controls are grouped in the tabs-->
        <r:RibbonGroup>
          <r:RibbonButton Command="{StaticResource MyFirstCommand}" />
        </r:RibbonGroup>
      </r:RibbonTab>
 
      <r:RibbonTab Label="A second tab"></r:RibbonTab>
    </r:Ribbon>
 
    <FlowDocumentReader />
  </DockPanel>
</Window>


Why using the RibbonCommand is broking the pattern

As you can see in the code above, when you declare the RibbonCommands in the XAML, you have to set a Execute and CanExecute event's handler. These handlers are set in the code behind and this is what breaks the pattern.

Sow why not only declare RibbonCommand inside the viewModels ? Because this will put presentation informations (those inside the RibbonCommand like images, description) inside the ViewModel which one must be decoupled from the way the data is presented.

Actually, only declaring RibbonCommands inside the ViewModel breaks the pattern because it exist a very strong link between the data and how it's presented in these objects.

An another thing is that you can't bind anything to the Ribbon commands because : A 'Binding' cannot be set on the 'XXX' property of type 'RibbonCommand'. A 'Binding' can only be set on a DependencyProperty of a DependencyObject.... Yes, a RibbonCommand is not a DependencyObject.

So I can't use the ribbon ?

Nooooo ! A solutions exists : first you can create some kind of proxies to the command which will make the commands available as a ressource in the views(CommandReference) through binding. Then the view will be responsible to create the RibbonCommands as they which from these commands in the ressources. To this purpose we'll have to extend the standard RibbonCommand to make them accepts a Command as a property.

Ok, ok, I heard your question : why not directy make the extended RibbonCommands acts as a proxy ? The answere is that RibbonCommand does not inherits from DependencyObject and so we can't bind anything on it :-( ! (Which means, by the way, that we can't bind the commands of the viewModels directly to them).

I did not invent this technique, it's from :



The proxy for the commands

As pointed out in this article I call them CommandReference.

We declare a DependencyProperty on which we will bind the command in the ViewModel. As you can see, this class is also a ICommand : all the calls will be translated to the binded command.

public class CommandReference : Freezable, ICommand
{
public static readonly DependencyProperty CommandProperty = 
  DependencyProperty.Register("Command", typeof(ICommand), typeof(CommandReference), 
     new PropertyMetadata(new PropertyChangedCallback(OnCommandChanged)));
public ICommand Command
{
  get { return (ICommand)GetValue(CommandProperty); }
  set { SetValue(CommandProperty, value); }
}
 
#region ICommand Members
public bool CanExecute(object parameter){ 
  return (Command != null) ?Command.CanExecute(parameter):false;
}
 
public void Execute(object parameter){ Command.Execute(parameter);}
 
public event EventHandler CanExecuteChanged;
private static void OnCommandChanged(DependencyObject d, DependencyPropertyChangedEventArgs e)
{
  CommandReference commandRef = d as CommandReference;
  if (commandReference != null)
  {
	ICommand lastCommand = e.OldValue as ICommand;
	if (oldCommand != null) lastCommand .CanExecuteChanged -= commandRef .CanExecuteChanged;
 
	ICommand nextCommand = e.NewValue as ICommand;
	if (newCommand != null) nextCommand .CanExecuteChanged += commandRef .CanExecuteChanged;
  }
}
#endregion
 
#region Freezable
protected override Freezable CreateInstanceCore()
{
  return new CommandReference();
}
#endregion

The extended RibbonCommands

We simply add a ICommand property to the RibbonCommand wich one we will be abble to fill in with a StaticRessource.

public class RibbonCommandExtended : RibbonCommand
{
  private ICommand _command;
  public ICommand Command
  {
    get { return _command; }
    set
    {
      _command = value;
      if (_command != null)
      {
        this.CanExecute += us_CanExecute;
        this.Executed += us_Executed;
      }
      else
      {
        this.CanExecute -= us_CanExecute;
        this.Executed -= us_Executed;
      }
    }
  }
 
  private void us_Executed(object sender, ExecutedRoutedEventArgs e)
  {
    Command.Execute(e.Parameter);
  }
 
  private void us_CanExecute(object sender, CanExecuteRoutedEventArgs e)
  {
    e.CanExecute = Command.CanExecute(e.Parameter);
  }
}


Then, what will my XAML looks like .

Here it is, especially for you, very simple :

<Window.Resources>
  <fwk:CommandReference x:Key="MyCommandReference"
      Command="{Binding MyViewModelCommand}" />
  <fwk:RibbonCommandExtended x:Key="cmd_MyCommand" LabelTitle="A labek"
      LabelDescription="A description"
      Command="{StaticResource MyCommandReference}"
      LargeImageSource="/MVVMRibbon;component/antoine64x64.jpg"
      SmallImageSource="/MVVMRibbon;component/antoine64x64.jpg" />
</Window.Resources>

Then you use the RibbonCommandExtended as you will have used the standard RibbonCommand.

Isn't it a little long to make something pretty simple ? The answer is definitively yes but the Microsoft seems to be working on new version of the ribbon which will respects the M-V-VM pattern...

Why not using our RamoraPattern ?

This is not possible because as I pointed out before, the RibbonCommands are not DependencyObject and so we can't attach properties to them :-( !



Links

Here are some links you may find interesting on the same subjects :


Shout it kick it on DotNetKicks.com



 

New RSS feed.

3 March 2010

Hello,

If you were following my RSS/Atom feed, please change for the new one on feedBurner : http://feeds.feedburner.com/JonathanAntoine

Thx.

 

MVVM : How to keep collections of ViewModel and Model in sync

2 March 2010

As pointed out in this post collections of the ViewModels and the models are not sync. This is because we do not access directly to the model but to an ObservableCollection(in the viewModel) which contains the object of the original collection(in the model) and that these two collections are not the same...

As pointed out in the comments on CodeProject, there is work-around. I try here to present two of them !

A first solution : register to the wrapping collection changes

The first solution is to register to the events of the ObservableCollection in your ViewModel and to translate the changes to the wrapped collection.
It is very straighforward but it becomes very fastidious if you have a lot of collections to deal with.

Here is the code :

//Wrap the business object collection
_friendsName = new ObservableCollection<string>(myBusinessObject.FriendsName);
//Register to the wrapping CollectionChanged event
_friendsName.CollectionChanged += new NotifyCollectionChangedEventHandler(_friendsName_CollectionChanged);
 
...
 
//Translate the changes to the underlying collection
void _friendsName_CollectionChanged(object sender, NotifyCollectionChangedEventArgs e)
{
 switch (e.Action)
 {
  case NotifyCollectionChangedAction.Add:
   _myBusinessObject.FriendsName.AddRange(
    e.NewItems.OfType<String>()
    );
   break;
  case NotifyCollectionChangedAction.Remove:
   _myBusinessObject.FriendsName.RemoveAll(
    friendName => e.OldItems.Contains(friendName)
    );
   break;
  //Reset = Clear
  case NotifyCollectionChangedAction.Reset:
   _myBusinessObject.FriendsName.Clear();
   break;
 }
}



Another solution : create a proxy

You also can create a class which will act as a Proxy to the businessObject. Its only function will be to leverage the INotifyCollectionChanged events when necessary. I called it MVMCollectionSyncher for ModelViewModelCollectionSyncher and here is the code (which is very straightforward) :

public class MVMCollectionSyncher<T> : ICollection<T>, IDisposable, INotifyCollectionChanged
{
 #region fields
 private ICollection<T> _wrappedCollection;
 #endregion
 
 public MVMCollectionSyncher(ICollection<T> wrappedCollection)
 {
  if (wrappedCollection == null)
   throw new ArgumentNullException(
    "wrappedCollection",
    "wrappedCollection must not be null.");
  _wrappedCollection = wrappedCollection;
 }
 
 #region ICollection<T> Members
 public void Add(T item)
 {
  _wrappedCollection.Add(item);
  FireCollectionChanged(
   new NotifyCollectionChangedEventArgs(NotifyCollectionChangedAction.Add, item));
 }
 
 public void Clear()
 {
  FireCollectionChanged(
   new NotifyCollectionChangedEventArgs(NotifyCollectionChangedAction.Reset));
  _wrappedCollection.Clear();
 }
 
 public bool Contains(T item)
 {
  return _wrappedCollection.Contains(item);
 }
 
 public void CopyTo(T[] array, int arrayIndex)
 {
  _wrappedCollection.CopyTo(array, arrayIndex);
 }
 
 public int Count
 {
  get { return _wrappedCollection.Count; }
 }
 
 public bool IsReadOnly
 {
  get { return _wrappedCollection.IsReadOnly; }
 }
 
 public bool Remove(T item)
 {
  if (_wrappedCollection.Remove(item)) {
   FireCollectionChanged(
     new NotifyCollectionChangedEventArgs(NotifyCollectionChangedAction.Remove, item));
   return true;
  }
  return false;
 }
 
 #endregion
 
 #region IEnumerable<T> Members
 public IEnumerator<T> GetEnumerator()
 {
  return _wrappedCollection.GetEnumerator();
 }
 #endregion
 
 #region IEnumerable Members
 System.Collections.IEnumerator System.Collections.IEnumerable.GetEnumerator()
 {
  return _wrappedCollection.GetEnumerator();
 }
 #endregion
 
 #region INotifyCollectionChanged Members
 public event NotifyCollectionChangedEventHandler CollectionChanged;
 private void FireCollectionChanged(NotifyCollectionChangedEventArgs eventArg)
 {
  NotifyCollectionChangedEventHandler handler = CollectionChanged;
  if (handler != null) handler.Invoke(this, eventArg);
 }
 #endregion
 
 #region IDisposable Members
 public void Dispose() { _wrappedCollection = null; }
 #endregion
}



Then in your ViewModel instead of presenting an ObservableCollection<> you offer an MVMCollectionSyncher with this code.

//Creation
MVMCollectionSyncher _friendsName = new MVMCollectionSyncher<string>(myBusinessObject.FriendsName);
...
//Property
public MVMCollectionSyncher<String> FriendsName
{
 get { return _friendsName; }
 set
 {
  if (value != null){
   _friendsName.Dispose();
   _friendsName = value;
   FirePropertyChanged("FriendsName");
  }
 }
}



Here are some links dealing on the same subject :



Shout it kick it on DotNetKicks.com
 

MVVM - Creating ViewModel : use XAML Power Toys (solution 2 of n).

Here is the next episode of our serie MVVM - Creating ViewModel. A list of all the article about creating a ViewModel is here..

Today we are going to discover a tool which can help us to create the ViewModel.

XAML Power Toys : add-in for VisualStudio

XAML Power Toys is an extremly useful add-in(build by Karl SHIFFLET) for VisualStudio that you can find at this URL : http://karlshifflett.wordpress.com/xaml-power-toys/. It is also available for Visual Studio 2010 since the 13 February 2010

With this add-in, you just have to make a right-click on you class and configure the viewModel that will be created. Then it copy into the clipboard the code of the corresponding ViewModel. Quite easy :-).

The only drawbacks is that it can be very long to do this for every object and I didn't find a way to automate the operation for a whole library of BusinessObjects...

RightClick : XAMLPowerToysCreateVM
Configuration screen :

v5001viewmodel_thumb

Do you know any other tool performing the same useful things ?



Shout it kick it on DotNetKicks.com




 

DependencyProperties or INotifyPropertyChanged ?

1 March 2010

When you want to make an object binding-aware you have two choices : implement INotifyPropertyChanged or create DependencyProperties. Which one is the best ? Let's try to answer this question !


How to implement INotifyPropertyChanged

Declaring that your class is implementing INotifyPropertyChanged adds an PropertyChangedEventHandler that you raise for every changes of the properties. We also add a little tricky method checkIfPropertyNameExists(String propertyName) which checks by reflection when debugging if the property name really exists ! You usually ends up with code like this :

/// <summary>
/// Base class for all my viewModel.
/// </summary>
public class ViewModelBase : INotifyPropertyChanged
{
#region INotifyPropertyChanged Members
public event PropertyChangedEventHandler PropertyChanged;
public void FirePropertyChanged(String propertyName)
{
  checkIfPropertyNameExists(propertyName);
  PropertyChangedEventHandler handler = PropertyChanged;
  if (handler != null)
    handler.Invoke(this, new PropertyChangedEventArgs(propertyName));
}
 
#endregion
 
[Conditional("DEBUG")]
private void checkIfPropertyNameExists(String propertyName)
{
  Type type = this.GetType();
  Debug.Assert(
    type.GetProperty(propertyName) != null,
    propertyName + "property does not exist on object of type : " + type.FullName);
}
}


As you can see, the code is quite easy to write and understand. You have to be very vigilant in checking the name of the property you gives as refactoring do not impacts Strings values but it stays quite simple.

DependencyProperties


MSDN definition of a DependencyProperty (link to) : a property that exists on a DependencyObject, is stored by the DependencyObject property store, and is identified by a DependencyProperty identifier on the owning DependencyObject.

Here is an example of how to create a DependencyProperty :

public class MyDependencyObject : System.Windows.DependencyObject
{
 public static readonly System.Windows.DependencyProperty MyDependencyPropertyProperty =
  System.Windows.DependencyProperty.Register("MyDependencyProperty", typeof(String), typeof(MyDependencyObject));
 
 public String MyDependencyProperty
 {
   get { return (String)GetValue(MyDependencyObject.MyDependencyPropertyProperty); }
   set { SetValue(MyDependencyObject.MyDependencyPropertyProperty, value); }
 }
}



Which one choose ?

Performances

All the tests are done under the .NET framework 4.0 with VisualStudio 2010 and .NET Memory Profiler 3.5.
The tests were already done on this page MVVM – Lambda vs INotifyPropertyChanged vs DependencyObject but I do not get the same results...

Execution times

To tests this I created a simple application and two textblocks binded to two String on my ViewModel. The tests were performed one by one and I took care to remove the inheritance of my ViewModel from DependencyObject when testing the INotifyPropertyChanged.

The code used to tests DependencyProperty is this one :

public static readonly DependencyProperty StringWithDependencyPropertyProperty =
DependencyProperty.Register("StringWithDependencyProperty", typeof(String), typeof(MainViewModel));
public String StringWithDependencyProperty
{
  get { return (String)GetValue(MainViewModel.StringWithDependencyPropertyProperty); }
  set { SetValue(MainViewModel.StringWithDependencyPropertyProperty, value); }
}
...
DateTime start = DateTime.Now;
for (int i = 0; i < 100000; i++)
  _mainViewModel.StringWithDependencyProperty = i.ToString();
DateTime end = DateTime.Now;
Console.WriteLine("Total time for DependencyProperty : " + (end - start).TotalMilliseconds +" ms.");


The code used to tests INotifyPropertyChangedis this one :

public String StringWithINotifyPropertyChanged
{
 get { return _stringWithINotifyPropertyChanged; }
 set
  {
    _stringWithINotifyPropertyChanged = value;
    firePropertyChanged("StringWithINotifyPropertyChanged");
  }
}
...
DateTime start = DateTime.Now;
for (int i = 0; i < 100000; i++)
  _mainViewModel.StringWithINotifyPropertyChanged = i.ToString();
DateTime end = DateTime.Now;
Console.WriteLine("Total time for INotifyPropertyChanged : " + (end - start).TotalMilliseconds+" ms.");


The results, for NO binding of the properties, were these :

Total time for DependencyProperty : 45 ms.
Total time for INotifyPropertyChanged : 171 ms.

The results, for one binding of the properties, were these :

Total time for DependencyProperty : 489 ms.
Total time for INotifyPropertyChanged : 1125 ms.

The results, for twelve binding of the properties, were these :

Total time for DependencyProperty : 3600ms.
Total time for INotifyPropertyChanged : 8375 ms.

DPvsInotifyPropertyChangedExecTimeChart
==> DependencyProperty is 2,30 times faster than INotifyPropertyChanged for one binding and this number does not increase with the number of binded controls.!

Edit : as argued in the comments on codeProject and even if it is not the most common way to use INotifyPropertyChanged , I have made the tests with a static event args, and the results are :

Total time for no binding: 154ms
Total time for one binding: 770ms
Total time for twelve bindings: 5605ms

==> DependencyProperies are still better, even if it's less...

Memory usage

I executed the same code and profiled the memory usages :

DependencyProperty created 600 new instances and add 44,583 bytes INotifyPropertyChanged created 876 new instances and add 63,536 bytes

DPvsInotifyPropertyChangedMemoryUsageChart
==> DependencyProperty seems (in my tests) to create less instance and to use less memory than the INotifyPropertyChanged system...

Inheritance issues

To create a DependencyProperty your objects needs to inherit from DependencyObject. This is not always possible and then using INotifyPropertyChanged is the only way to make it Bindable-aware.

Also, by being a DependencyObject, your object will carry with it all the dependency engine stuff and these limitations:


Inheritance from a base class you do not have a grip on ?=> No DependencyProperty !

Animations

Using DependencyProperty make the poperties animatable. If you want to animate a property, there is no simple work-around because, as the MSDN says : In order to be animated, the animation's target property must be a dependency property.

If you can't use DependencyProperty (when you do not create the objects for example), there is still work-arounds techniques.

Flexibility

Using INotifyPropertyChanged is sometimes more flexible than using DependencyProperty. Let me explain that. When you build a screen on which a lot of controls visibility dependsof some rules, you may declare a boolean which value is computed from other boolean.

For example, IsEditionPosible must be set to true only if IsAlreadyInEditionMode = false and if UserHasEditionRights = true. So when changing the value of IsAlreadyInEditionMode or UserHasEditionRights you must tells the binding engine that IsEditionPosible has been updated too. It's easier to do this with INotifyPropertyChanged than with the DependencyProperty with which you should have to create a method, which recalculate and reassign the new value to IsEditionPosible . Here you just have to use this little snippet :

public Boolean IsAlreadyInEditionMode 
{
 get { return _isAlreadyInEditionMode ; }
 set
  {
    _isAlreadyInEditionMode = value;
    firePropertyChanged("IsAlreadyInEditionMode ");
    firePropertyChanged("IsEditionPosible");
  }
}
 
public Boolean UserHasEditionRights 
{
 get { return _userHasEditionRights ; }
 set
  {
    _userHasEditionRights = value;
    firePropertyChanged("UserHasEditionRights");
    firePropertyChanged("IsEditionPosible");
  }
}
 
public Boolean IsEditionPosible
{
 get { return UserHasEditionRights && !IsAlreadyInEditionMode  ; }
}


Note that this is the way that I create computed value for easier binding in my viewModel but this is a subject where improvments may be done...

Flexibility (easier code writing) needed ?=> Choose INotifyPropertyChanged !

Testing

When you performs testing on your object, you will be in trouble if you use DependencyObject : the test are not done on the same thread that created the object and then throws you a "System.InvalidOperationException: The calling thread cannot access this object because a different thread owns it".

Testing => No DependencyProperty !

Code Readability/writing

Some people argues that the use of DependencyProperties the code extremely ugly. I myself think that this is exaclty the same. To make easier the creation of dependencyProperty you can use this snippet : link to the snippet


Links of articles on the same subject :



Shout it kick it on DotNetKicks.com


 

Serialize DependencyObject : it's easy !

You often read on the web that the DependencyObjects are not marked as serializable and that this is a major drawback of them...



But there is a easy way to perform a serialization of these object : use XAMLWriter and XAMLReader :

public class MyDependencyObject : DependencyObject
{
public static readonly DependencyProperty MyDependencyPropertyProperty =
  DependencyProperty.Register("MyDependencyProperty", typeof(String), typeof(MyDependencyObject));
 
  public String MyDependencyProperty
  {
    get { return (String)GetValue(MyDependencyObject.MyDependencyPropertyProperty); }
    set { SetValue(MyDependencyObject.MyDependencyPropertyProperty, value); }
  }
 
}
 
...
 
MyDependencyObject obj = new MyDependencyObject();
obj.MyDependencyProperty = "One love";
String serializedString = XamlWriter.Save(obj);
Console.WriteLine(serializedString);


It will produce something like this :

<MyDependencyObject MyDependencyProperty="One love" xmlns="clr-namespace:ANTOINE.Jonathan;assembly=ANTOINE.Jonathan" />


Shout it kick it on DotNetKicks.com
 

MVVM - Creating ViewModel : wrap your business object (solution 1 of n).

24 February 2010

Intro

When you create WPF applications, you may (or you should !) use the M-V-VM pattern and so have to use/create ViewModel. The viewModel job is mainly to expose properties of your businessObjects to your views, ready for binding.

To be ready for the binding the most used solution is to implement INotifyPropertyChanged and to fire events fo every change made. An issue is that you often do not create the business object used by the application which are created by another team and that these object are not ready for binding. So you must find a solution to create an object which will in fact be very similar of your business object BUT ready for binding.

In this serie of post I will try to give some of the solution we can use to do so. A list of all the article is here..

Wrap your business object(solution 1 of n)

The first solution which appears in every developper's brain is to wrap theBusinessObject(BO) into the viewmodel. Every properties of your ViewModel will actually be some kind of proxy to/from the underlying BO.

For example let's take for granted that you have a businessObject like this :

/// <summary>
/// I'am the business object created by another team. I'am not binding-aware : shame on me !
/// </summary>
public class MyBusinessObject
{
  public String LastName { get; set; }
  public String FirstName { get; set; }
  public int Age { get; set; }
  public List<String> FriendsName { get; set; }
}


You will then gives the Business object to your viewModel which will act as a proxy. the result will be something like this :

public class ViewModelWrapped : ViewModelBase
{
private MyBusinessObject _myBusinessObject;
private ObservableCollection<String> _friendsName;
 
public ViewModelWrapped(MyBusinessObject myBusinessObject)
{
  _myBusinessObject = myBusinessObject;
  _friendsName = new ObservableCollection<string>(myBusinessObject.FriendsName);
}
 
public String FirstName
{
  get { return _myBusinessObject.FirstName; }
  set
  {
    FirePropertyChanged("FirstName");
    _myBusinessObject.FirstName = value;
  }
}
 
public String LastName
{
  get { return _myBusinessObject.LastName; }
  set
  {
    FirePropertyChanged("LastName");
    _myBusinessObject.LastName = value;
  }
}
 
public int Age
{
  get { return _myBusinessObject.Age; }
  set
  {
    FirePropertyChanged("Age");
    _myBusinessObject.Age = value;
  }
}
 
public ObservableCollection<String> FriendsName
{
  get { return _friendsName; }
  set
  {
    if (value != null)
    {
      FirePropertyChanged("FriendsName");
      _myBusinessObject.FriendsName = value.ToList<String>();
    }
  }
}
}



Notes : Something interesting to look at is how we wrap our collections to make them bindable : quite a job ! More over the model and the viewModel list are no more synched... The list object itself is synched but the operation on the collection will be made on the viewModel collection and no more on the model collection. In this case adding or removing a friend's name will affect only the ViewModel and not the model.


Pros and cons

Pro :

  • The name of the properties exposed to your views can be differents from those in the business object
  • It's very easy to understand the code when you read it again, even a few months later



Cons:

  • It's a very boring job to re-create the properties of the viewModel to map those from the BO
  • Collection and Set of the model are no more synched with the ViewModel
  • Copy-cut code can leads to error, especially when raising INotifyPropertyChanged events where case matters



NB: I've found an article of Josh Smit on this subject that you may find useful too.
and this link too : MVVM: To Wrap or Not to Wrap? How much should the ViewModel wrap the Model? (Part 1)

Shout it kick it on DotNetKicks.com
 

WPF - catch events even if they are already handled

19 February 2010

As you may actually know WPF introduced the routed events. These last are no more specific to a single control but they are routed inside the tree of your controls.

If you want to stop an event, you can mark it as Handled. If so, the routing engine will stop to propage it. In fact this is just an illusion because the engine will only stop leveraging your handlers.

But sometimes, for example when you are using a control from third parties, you want to catch the events even if marked as handled. Here is the little piece of code to use :

anyUIElement.AddHandler(
    UIElement.MouseEnterEvent,
    (RoutedEventHandler)OnMouseEnterCallMeAlways,
    true
    );


This method can be called on any UIElement, in code only. The important part here is the Boolean (true) which tells the engine to call the handle even if the events is marked as handled.


Shout it kick it on DotNetKicks.com
 

Use AttachedProperties to add behaviors to the components (Ramora pattern)

The problem

In WPF you expect your components/controls to behave exactly as you want to.... but this not always the case.
For example : why does this combobox not execute a command when I change the selection or more often why this textbox does not execute a command when I press the Enter (return) key ?

This problem often occurs when you use the - well know - pattern M-V-VM and it's sometimes hard to find a workaround. Today I will explain you a design pattern, know as the Ramora pattern which I find very useful.
By the way, you can also use it to create a library of behaviors for all your projects...

Wanted application

Ramora pattern

One solution (or the ramora pattern explained)


The idea

The solution is based on the attached properties (MSDN page here) of the WPF binding engine. With this mechanism you can attach any property to any object you want and it's massively used in layout controls (DockPanel.Dock for example)..

By attaching and detaching properties we will attach some handlers on the events of our choice to add behaviors to the controls. The value passed by the property will also be useful as a data storage....


The steps are :

  1. Create a class of your choice, no inheritance needed,
  2. Declare an attachedProperty by registering it and adding the corresponding GetXXX and SetXXX,
  3. Add an event handler to the change of this property : inside it, add an event handler to the event you want to catch (for example MouseEnter),
  4. Add the behavior logic inside this last event handler
  5. Attach this behaviors to the aimed control inside your XAML (after you'd declared the XMLNS)


An example

In this example we'll try to add a nice beahavior to any IInputElement : anytime the user presses the 'Enter' key, it will execute a Command.

We'll then declare a Command attached property of type 'ICommand' which will be the command to execute on a given event (very original isnt it ?).

#region Command Property
/// <summary>
/// Enables Command functionality
/// </summary>
public static ICommand GetCommand(DependencyObject obj)
{
	return (ICommand)obj.GetValue(CommandProperty);
}
 
/// <summary>
/// Enables Command functionality
/// </summary>
public static void SetCommand(DependencyObject obj, ICommand value)
{
	obj.SetValue(CommandProperty, value);
}
 
/// <summary>
/// Enables Command functionality
/// </summary>
public static readonly DependencyProperty CommandProperty =
	DependencyProperty.RegisterAttached("Command",
 typeof(ICommand),
 typeof(CommandOnEnter), 
new UIPropertyMetadata(null, new PropertyChangedCallback(CommandPropertyChanged)));



Then everytimes the property is assigned we will attach or detach our event handlers on the DependencyObject which uses it. In our case this is an IInputElement.

/// <summary>
/// Command property changed callback
/// </summary>        
static void CommandPropertyChanged(DependencyObject sender, DependencyPropertyChangedEventArgs e)
{
	//Test in debug mode if it's binded to the correct type of element...
	Debug.Assert(sender is IInputElement, "Attached property only for a IInputElement");
	if (sender is IInputElement)
	{
		IInputElement inputElement = sender as IInputElement;
 
		// Clean when Command is released
		if (e.OldValue != null)
		{
			Detach(inputElement);
		}
 
		//Attach the behavior
		if (e.NewValue != null)
		{
			Attach(inputElement);
		}
 
	}
}
 
/// <summary>
/// Clean event handlers
/// </summary>
/// <param name="inputElement">The aimed IInputElement</param>
private static void Detach(IInputElement inputElement)
{
	inputElement.PreviewKeyDown -= CommandOnEnter_PreviewKeyDown;
	if (inputElement is FrameworkElement)
		(inputElement as FrameworkElement).Unloaded -= CommandOnEnter_Unloaded;
}
 
 
private static void Attach(IInputElement inputElement)
{
	inputElement.PreviewKeyDown += new KeyEventHandler(CommandOnEnter_PreviewKeyDown);
	if (inputElement is FrameworkElement)
		(inputElement as FrameworkElement).Unloaded += new RoutedEventHandler(CommandOnEnter_Unloaded);
 
}



The keyPressed event handler checks if the enter key is pressed and execute the command if yes. The command to execute is retrieved via the attachedProperties system of WPF (GetValue method) :

static void CommandOnEnter_PreviewKeyDown(object sender, System.Windows.Input.KeyEventArgs e)
{
	if (sender is IInputElement)
	{
		var textBox = sender as IInputElement;
		if (e.Key == Key.Enter && e.KeyboardDevice.Modifiers == ModifierKeys.None)
		{
			ICommand cmd = GetCommand(sender as DependencyObject) as ICommand;
			cmd.Execute(null);
		}
 
	}
}



That's all !

Adding a parameter ?

What if you want to pass a parameter to the executed Command ? You will simply have to add another Attached property and get it's value in the keyPressed event handler.

/// <summary>
/// Enables CommandParameter functionality
/// </summary>
public static object GetCommandParameter(DependencyObject obj)
{
	return (object)obj.GetValue(CommandParameterProperty);
}
 
/// <summary>
/// Enables CommandParameter functionality
/// </summary>
public static void SetCommandParameter(DependencyObject obj, object value)
{
	obj.SetValue(CommandParameterProperty, value);
}
 
/// <summary>
/// Enables CommandParameterProperty functionality
/// </summary>
public static readonly DependencyProperty CommandParameterProperty =
	DependencyProperty.RegisterAttached("CommandParameterProperty", typeof(object), typeof(CommandOnEnter));

Funny things to do

The ramora pattern can be used to do a lot of things, here is a list of some I'am thinking :

  • Execute a command on a textbox when pressing enter,
  • Select all the text when a textbox gets the focus,
  • Etc...



Here are some links you may find useful :

  1. Thinking in WPF: attached properties
  2. More advanced attached property use: the Ramora pattern
  3. Behaviors in Silverlight 4.0



Shout it kick it on DotNetKicks.com



 

- page 2 of 4 -